Paper/Nano Technology Books
Micro and Nanotechnology in Paper Manufacturing
Author- Dr. Mahendra Patel, (530 pages ); ISBN No. 978-81-923542-2-4);
Price: $ (USA) 120 + delivery charge
Minerals in Paper Manufacturing
(Author- Dr. Mahendra Patel, 32 chapters, 350 pages ; ISBN No. 978-81-923542-1-7).
Price: $ (USA) 65 + delivery charge
Operations and Recycling in Paper Mills with Micro and Nano Concepts
Author- Dr. Mahendra Patel; (22 chapters- 500 pages); ISBN No.978-81-923542-3-1)
Price: $ (USA) 150 + delivery charge
Materials for
Better Productivity in Pulp and Paper Mills: Metals and Polymers
(Author: Dr. Mahendra
Patel; 616 pages; 36 chapters; ISBN No.978-81-923542-5-5)
Price- US $230+
Cost of dispatch.
Ceramics in Paper Manufacturing
including Advanced and Nano Materials
(Author: Dr.
Mahendra Patel, 420 pages; 32 chapters, ISBN No: 978-81-923542-4-8.)
Price: $ (USA) 220 + delivery charge
Contact: industrypaper@yahoo.co.uk
patel@nanoindustry.in
:Tel:91(0)9871787870
Payment possible through Paypal/Bank transfer/Cheque
Up to 30% reduction to specialised Organisations/Individuals
Sent by Registered Airmail through Post office after confirmation of payment
Nanotechnology Update
Pulp, Paper and Packaging industries
27/04/2011
Cellulose nanofibers reinforced with cellulose nanocrystals
Aligned cellulose nanocrystals/cellulose coelectrospun nanofibers were successfully prepared by using a home-built coelectrospinning and collection system. Cellulose I was dissolved in N-methyl morpholine oxide at 120°C and diluted with dimethyl sulfoxide, which was used in the external concentric capillary needle as the sheath (shell) solution. A cellulose nanocrystal suspension obtained by sulfuric acid hydrolysis of cotton fibers was used as the core liquid in the internal concentric capillary needle after transferring from water to dimethyl sulfoxide. The resultant coelectrospun nanocomposite films were collected onto a rotating wire drum and were characterized by field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy, thermogravimetric analysis, and tensile measurements. The FE-SEM image showed that the cellulose nanocrystals did not appear to cluster in the film formed. Although the crystallinity index of nanocomposite fibers was lower than the unreinforced cellulose electrospun fibers, the cellulose type II reinforced with cellulose nanocrystals had a much higher tensile stress (about 140 MPa), almost twofold that of pure cellulose. This latter result indicated that the alignment and adhesion of amorphous cellulose nanofibers played a crucial role on the mechanical properties of electrospun celluosic fiber mats. Alignment of fibers plays a crucial role in the overall physical properties of electrospun fiber mats, similar to what is observed in the formation of paper sheets from individual fibers. From a commercial perspective, this has strong implications when considering a material’s desired properties. (Source:TAPPI JOURNAL April 2011)
