Login   Search
Skip Navigation Links
Nanotechnology update
Ceramics in Paper
Operations & Recycling
Minerals
Metals & Polymers
Profile
Nanotechnology
Science et Séjour en France
Consultancy
Nanotechnology
Scroll up
Scroll down

Science et Séjour en France

  • Science et Séjour en France
Skip Navigation Links>Nanotechnology update

Paper/Nano Technology Books

Micro and Nanotechnology in Paper Manufacturing

Author- Dr. Mahendra Patel, (530 pages ); ISBN No. 978-81-923542-2-4); 

Price:  $ (USA) 120 + delivery charge

Minerals in Paper Manufacturing

(Author- Dr. Mahendra Patel, 32 chapters, 350 pages ; ISBN No. 978-81-923542-1-7).

Price:  $ (USA) 65 + delivery charge

Operations and Recycling in Paper Mills with Micro and Nano Concepts

Author- Dr. Mahendra Patel; (22 chapters- 500 pages); ISBN No.978-81-923542-3-1) 

Price:  $ (USA) 150 + delivery charge

Materials for Better Productivity in Pulp and Paper Mills: Metals and Polymers

(Author: Dr. Mahendra Patel; 616 pages; 36 chapters; ISBN No.978-81-923542-5-5)

Price- US $230+ Cost of dispatch.

Ceramics in Paper Manufacturing including Advanced and Nano Materials

(Author: Dr. Mahendra Patel, 420 pages; 32 chapters, ISBN No: 978-81-923542-4-8.)

Price:  $ (USA) 220 + delivery charge

Contact: industrypaper@yahoo.co.uk

patel@nanoindustry.in

:Tel:91(0)9871787870

Payment possible through Paypal/Bank transfer/Cheque

Up to 30% reduction to specialised Organisations/Individuals

Sent by Registered Airmail through Post office after confirmation of payment

Nanotechnology Update

Pulp, Paper and Packaging industries


DateNews
06/07/2020Nanoparticle-based Antimicrobial Paper as Spread-breaker for Coronavirus
11/02/2019CelluForce restarts production of Cellulose Nanocrystals
27/09/2018Cellulose Nanocrystals as Advanced Barrier Coatings for Food Packaging
13/03/2018Scaling Up Production of Colloidal Lignin Particles
26/02/2018Cellulose Nanofibril Hydrogel
28/05/2012Hydrogen from Paper Mill waste water with Nanotechnology
30/04/2012Micro and Nanotechnology in Formation and Control of Harsh Environments
02/04/2012Nanofibres produced from sludge
13/03/2012Nanotechnology in Bioenergy
28/02/2012Composites from microfibrillated cellulose-reinforced thermoset starch
28/02/2012Montmorillonite nanocomposite nanofibre mats
28/02/2012Silicon nitride composite reinforced by SiC nanoparticles
13/02/2012First biorefinery in the world
13/02/2012Next generation weight xP actuators
03/02/2012Biorefinery plant
03/02/2012Biofuel from Grass
03/02/2012Nanocrystalline Cellulose demonstration plant
24/01/2012Starch Nanocrystals for Bio-Based Flexible Packaging
24/01/2012First Commercial Lignoboost Plant
24/01/2012Pitch detackification with natural and modified talcs

1 2 3 4 5 6 7 8 9 10 
27/04/2011

Cellulose nanofibers reinforced with cellulose nanocrystals

Aligned cellulose nanocrystals/cellulose coelectrospun nanofibers were successfully prepared by using a home-built coelectrospinning and collection system. Cellulose I was dissolved in N-methyl morpholine oxide at 120°C and diluted with dimethyl sulfoxide, which was used in the external concentric capillary needle as the sheath (shell) solution. A cellulose nanocrystal suspension obtained by sulfuric acid hydrolysis of cotton fibers was used as the core liquid in the internal concentric capillary needle after transferring from water to dimethyl sulfoxide. The resultant coelectrospun nanocomposite films were collected onto a rotating wire drum and were characterized by field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy, thermogravimetric analysis, and tensile measurements. The FE-SEM image showed that the cellulose nanocrystals did not appear to cluster in the film formed. Although the crystallinity index of nanocomposite fibers was lower than the unreinforced cellulose electrospun fibers, the cellulose type II reinforced with cellulose nanocrystals had a much higher tensile stress (about 140 MPa), almost twofold that of pure cellulose. This latter result indicated that the alignment and adhesion of amorphous cellulose nanofibers played a crucial role on the mechanical properties of electrospun celluosic fiber mats. Alignment of fibers plays a crucial role in the overall physical properties of electrospun fiber mats, similar to what is observed in the formation of paper sheets from individual fibers. From a commercial perspective, this has strong implications when considering a material’s desired properties. (Source:TAPPI JOURNAL April 2011)

Rss