Paper/Nano Technology Books
Micro and Nanotechnology in Paper Manufacturing
Author- Dr. Mahendra Patel, (530 pages ); ISBN No. 978-81-923542-2-4);
Price: $ (USA) 120 + delivery charge
Minerals in Paper Manufacturing
(Author- Dr. Mahendra Patel, 32 chapters, 350 pages ; ISBN No. 978-81-923542-1-7).
Price: $ (USA) 65 + delivery charge
Operations and Recycling in Paper Mills with Micro and Nano Concepts
Author- Dr. Mahendra Patel; (22 chapters- 500 pages); ISBN No.978-81-923542-3-1)
Price: $ (USA) 150 + delivery charge
Materials for
Better Productivity in Pulp and Paper Mills: Metals and Polymers
(Author: Dr. Mahendra
Patel; 616 pages; 36 chapters; ISBN No.978-81-923542-5-5)
Price- US $230+
Cost of dispatch.
Ceramics in Paper Manufacturing
including Advanced and Nano Materials
(Author: Dr.
Mahendra Patel, 420 pages; 32 chapters, ISBN No: 978-81-923542-4-8.)
Price: $ (USA) 220 + delivery charge
Contact: industrypaper@yahoo.co.uk
patel@nanoindustry.in
:Tel:91(0)9871787870
Payment possible through Paypal/Bank transfer/Cheque
Up to 30% reduction to specialised Organisations/Individuals
Sent by Registered Airmail through Post office after confirmation of payment
Nanotechnology Update
Pulp, Paper and Packaging industries
03/02/2012
Biofuel from Grass
Scientists from the Biotechnology and Biological Sciences Research Council (BBSRC) Sustainable Bioenergy Centre (BSBEC) have uncovered a series of genes which could help grasses being breed with better characteristics for bioenergy production. The genes help to better develop the wood part of the grass, called the fibrous, such as what is in rice and wheat. In understanding how these genes operate, the scientists hope to be able to discover how to breed crops so that they need less energy to turn them into biofuel. Most of the energy in the plants is stored in the woody part but it is difficult to access this energy. However, the researchers discovered that they could create multi-use crops where the straw could be used to create energy more efficiently.
They say that this is essential in order to create energy in a sustainable manner without competing with food. Unlike starchy grains, the energy stored in the woody parts of plants is locked away and difficult to get at. Just as cows have to chew the cud and need a stomach with four compartments to extract enough energy from grass, we need to use energy-intensive mechanical and chemical processing to produce biofuel from straw. What we hope to do with this research is to produce varieties of plants where the woody parts yield their energy much more readily - but without compromising the structure of the plant. We think that one way to do this might be to modify the genes that are involved in the formation of a molecule called xylan - a crucial structural component of plants. It is this xylan that makes up the wall that surrounds the plants’ cells, holding molecules in place so that the plant stays tough. It is this that needs to be broken down in order to access the energy more efficiently.
However, grasses have a different type of xylan when compared to other plants and the scientists wanted to discover what this difference was. They searched for the genes that were switched on more readily in grasses and found the gene family in wheat and rice, which was called GT61, which they could use to give the grass a form of xylan. (Source: www.bioenergy-news.com)

|
|
22 | 23 | 24 | 25 | 26 | 27 | 28 |
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 | 1 | 2 | 3 | 4 |