Login   Search
Skip Navigation Links
Nanotechnology update
Ceramics in Paper
Operations & Recycling
Minerals
Metals & Polymers
Profile
Nanotechnology
Science et Séjour en France
Consultancy
Nanotechnology
Scroll up
Scroll down

Science et Séjour en France

  • Science et Séjour en France
Skip Navigation Links>Nanotechnology update

Paper/Nano Technology Books

Micro and Nanotechnology in Paper Manufacturing

Author- Dr. Mahendra Patel, (530 pages ); ISBN No. 978-81-923542-2-4); 

Price:  $ (USA) 120 + delivery charge

Minerals in Paper Manufacturing

(Author- Dr. Mahendra Patel, 32 chapters, 350 pages ; ISBN No. 978-81-923542-1-7).

Price:  $ (USA) 65 + delivery charge

Operations and Recycling in Paper Mills with Micro and Nano Concepts

Author- Dr. Mahendra Patel; (22 chapters- 500 pages); ISBN No.978-81-923542-3-1) 

Price:  $ (USA) 150 + delivery charge

Materials for Better Productivity in Pulp and Paper Mills: Metals and Polymers

(Author: Dr. Mahendra Patel; 616 pages; 36 chapters; ISBN No.978-81-923542-5-5)

Price- US $230+ Cost of dispatch.

Ceramics in Paper Manufacturing including Advanced and Nano Materials

(Author: Dr. Mahendra Patel, 420 pages; 32 chapters, ISBN No: 978-81-923542-4-8.)

Price:  $ (USA) 220 + delivery charge

Contact: industrypaper@yahoo.co.uk

patel@nanoindustry.in

:Tel:91(0)9871787870

Payment possible through Paypal/Bank transfer/Cheque

Up to 30% reduction to specialised Organisations/Individuals

Sent by Registered Airmail through Post office after confirmation of payment

Nanotechnology Update

Pulp, Paper and Packaging industries


DateNews
16/02/2021Antimicrobial Paper Embedded with Nanoparticles as Spread-Breaker for Corona Virus
06/07/2020Nanoparticle-based Antimicrobial Paper as Spread-breaker for Coronavirus
27/09/2018Cellulose Nanocrystals as Advanced Barrier Coatings for Food Packaging
13/03/2018Scaling Up Production of Colloidal Lignin Particles
28/05/2012Hydrogen from Paper Mill waste water with Nanotechnology
30/04/2012Micro and Nanotechnology in Formation and Control of Harsh Environments
02/04/2012Nanofibres produced from sludge
13/03/2012Nanotechnology in Bioenergy
28/02/2012Composites from microfibrillated cellulose-reinforced thermoset starch
28/02/2012Montmorillonite nanocomposite nanofibre mats
28/02/2012Silicon nitride composite reinforced by SiC nanoparticles
13/02/2012First biorefinery in the world
13/02/2012Next generation weight xP actuators
03/02/2012Biorefinery plant
03/02/2012Biofuel from Grass
03/02/2012Nanocrystalline Cellulose demonstration plant
24/01/2012Starch Nanocrystals for Bio-Based Flexible Packaging
24/01/2012First Commercial Lignoboost Plant
24/01/2012Pitch detackification with natural and modified talcs
24/01/2012Microstructure simulation of paper forming

1 2 3 4 5 6 7 8 9 10 
19/06/2010

Buckypaper improves fire retardancy of plastic materials

Flame retardant materials have become a major business for the chemical industry and can be found practically everywhere in modern society. Unfortunately, conventional methods for making plastic flame retardant involve a range of often very toxic chemicals. Researchers have now shown that the use of buckypaper – macroscopic aggregates of intertwined CNTs in which the nanotubes collectively behave as a random web – is more efficient as a fire retardant in polymer composites in comparison to directly mixing carbon nanotubes (CNTs) into the composite matrix. According to the team, the buckypaper was far more efficient as a fire retardant in fibre/polymer composites than MWCNTs that were directly mixed with the polyimide resin. The buckypaper survived the burning test as a fire retardant shield with ash deposited on the burned composite surface. They conclude that the buckypaper acted as a shielding layer, obstructing the flow of heat and oxygen to the inner polymer matrix. To fabricate their buckpaper, the researchers purchased SWCNTs and MWCNTs off the shelf and used them without further purification. Through grinding and mixing with de-ionized water they formed a thick paste which they subsequently diluted, sonicated and filtrated through a nanomembrane (450 nm pore size) under vacuum pressure. Buckypaper with a thickness of 40 µm remained on the membrane and could then be peeled off.
Rss
<March 2021>
MoTuWeThFrSaSu
22232425262728
1234567
891011121314
15161718192021
22232425262728
2930311234